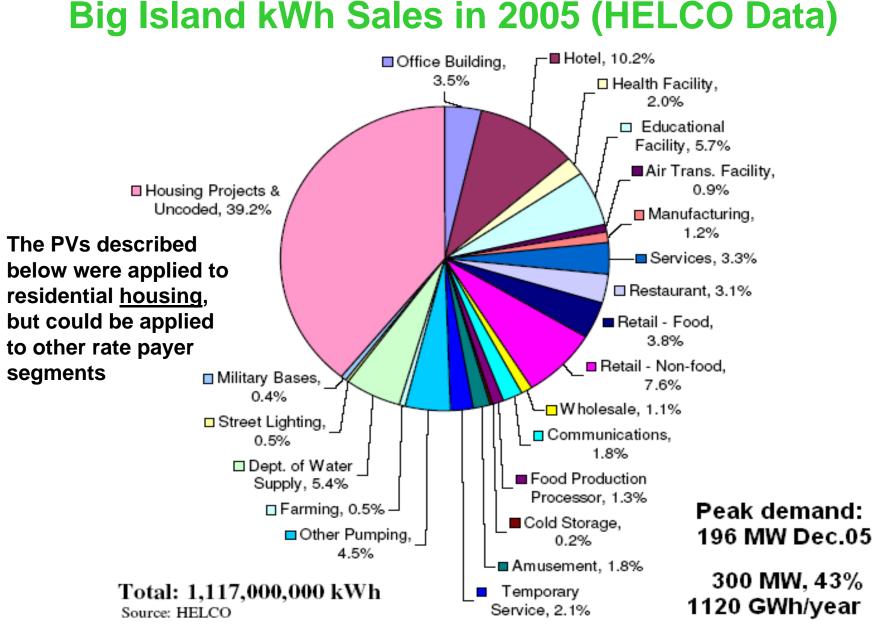
3-Minute Statement to the Hawaii County Energy Advisory Commission, 18 Oct. 2012


Big Island Clean Energy Security via Roof PVs

Ulrich Bonne, Kailua-Kona, HI

<u>Objective</u>: To lower electricity cost from 0.41 to < 0.20 \$/kWh*, have affordable, clean energy security for 200,000 residents in ~73,000 homes, while profitably retaining HELCO's grid <u>Proposal</u>: B.I. home roof area avg. = 1076 ft2, good for 10 kW.

- Install 6 +/- 4 kW PVs to all 73,000 B.I. homes, with battery back-up to minimize 5-9 pm back-up load from the grid
- Utilize 70% of PV energy on site, w/ 3-5-h battery back-up
- Pay \$20/month MMC** & give 30% to utility, and maintain its (residential load) \$-profit for its shareholders of ~\$9-18M
- Use part of 30% PV, free kWh for EV charging or H2 prod.
- Pono: Use PV on-grid w/HELCO back-up, not lower cost of PV off-grid w/o HELCO, but benefit from zero or low-cost "fuel" for EVs or FCVs
- Next step: Study such DoE micro-grid PV projects vs. weather dynamics. See e.g. <u>www.silentpwr.com/blog</u> on the SMUD project in Sacramento & others

* About what imported natural gas-fired generation may achieve today
 ** MMC = Minimum Monthly Charge ***<u>www.AlohaFuels.pbworks.com</u>
 1
 Big Is. Roof PV Energy

J. Johnson, D. Leistra, J. Opton-Himmel, & M. Smith

Big Is. Roof PV Energy

2 ulrichbonne@msn.com

\$/kWh Comparisons: Homes on- & off-grid vs. utilities

All entries normalized to 1 kW(peak)	Home PV	Home PV+B	Home PV+B	Utility PV	Fossil Fuel
CAPEX per 1 kW(peak) PV	On Grid	Off-Grid	On Grid	On-Grid	Utility
	\$/kW(peak)	\$/kW(peak)	\$/kW(peak)	\$/kW(peak)	\$/kW(peak)
PVs and inverters	3,000	2,500	2,500	1,500	1,500
Batteries, enough for 5-hour storage	0	1,000	1,000	2,500	0
Charge controller & information technoogy	0	340	340	0	0
Back-up generator, 2 kW/kW-PV	0	200	0	200	0
Installation of system (100% of hardware)	3,000	4,040	3,840	4,200	1,500
Transmission & distribution, at 1 M\$/mile	0	0	0	3,333	3,333
Environmental impact anal., permits & reports	0	0	0	33	100
Real utilization of generated kWh by home or grid, %	70	70	70	70	43
OPEX for 30 yrs. per 1 kW PV; Capacity Factor, %	16	16	16	16	90
Minimum Monthly Charge	2,400	0	2,400	0	0
Land lease at 6000 \$/y/acre	0	0	0	360	18
Op.& maintenan., taxes, salaries, insurance	0	0	0	3,520	7 ,220
Transmission loss (~10% for utilities)	0	0	0	1,383	4,872
Fuel for generator energy, back-up	0	720	0	360	58,906
Total life cycle cost in \$/kW(peak)	8,400	8,800	10,080	17,390	77,449
A. Levelized electr.cost w/o subsidies in \$/kWh	0.200	0.209	0.240	0.455	0.360
B. Levelized electr.cost after subsidies in \$/kWh	0.129	0.124	0.157	0.363	0.360
C. Real level.electr.cost after subsidies in \$/kVVh	0.185	0.177	0.225	0.498	0.415
	FSyn\TL-11-MP-H2-Techs, 9 Oct.'12				

Big Is. Roof PV Energy

ulrichbonne@msn.com

Roof-PV Options for Big Island Rate Payers Plan:

1. Homes & businesses: PVs w/ battery back-up +

+ add'l. back-up by utility, on-grid

2. Homes & businesses: PVs w/ battery back-up + + add'l. back-up by genset, off-grid

Rationale:

- <u>PV</u> is renewable, distrib. & low-maint. electricity source
- <u>Battery back-up</u> is needed to meet the 5-9 pm peak demand period, cut transm. losses & cut imported oil
- On-grid additional back-up via NEM (or FIT) contract
- Off-grid additional back-up via home generator set
 PV Investment: 6 kW PV * 73,000 * 5-6 \$/W = \$2.67billion
- 200,000 / 2.75 ~73,000 homes, avg. suitable roof area 100 m2

or 1076 ft2, enough for 50 PV panels of 200 W = 10 kW. At 500 kWh/month, 4.3 kW for 100% average utilization

6.1 kW for 70% average utilization

At 250 kWh/month, 3.0 kW for 70% average utilization

Big Is. Roof PV Energy

ulrichbonne@msn.com

Big Island Utility – Now & After PV On-Grid v.1.1

Sales to 73,000 homes @ 0.41 \$/kWh, using 39% & 0% oil-based product **AFTER 100% PV** BEFORE 270*0.39=105 MW ~ 1 MW Annual oil-kWh sales *438 GWh / \$ 180M 4.38 GWh / \$ **2M** Annual excess PV-kWh sales \$ 0 M 54 GWh / \$ 22M 134 GWh / \$(55)M*** **PV-kWh freebees** \$ 0 M Annual MM Charges <2.5% homes <\$ 0.5M \$20/mo./home \$ 18M 42 Mgal / \$-125M Annual fuel costs 0.4 Mgal / \$-**1M** Annual O&M generation expen. 3% **\$- 10M** \$- 5M Annual O&M distrib. expenses 3%** \$- 27M **\$- 27M** Annual Profit of 10% **\$- 18M \$- 9M** Balance 0 Ω Installed PV cost: 6.1 kW*73,000*4 \$/W = \$1800M; or 3kW ÷ \$900M

* = 500 kWh/mo.*12 mo./y*73000 homes/1000000*0.41 \$/kWh

** O&M Expenses are assumed to be 3% of CAPEX/year
*** free electricity, worth \$55M if sold at 0.41 \$/kWh, or worth
134*4 = 536 million EV miles or 45,000 EVs @ 12,000 miles/year, at
a fuel charger cost of \$3000/30y/12000 = 0.83 ¢/mile
134*0.7/33.7*60mi,/GGE = 167 million FCV miles or 14,000 FCVs
at a fuel cost of 3-4 \$/GGE-H2 or 5 - 7 ¢/mile. CV at ~ 15 ¢/mile ⁵
Big Is. Roof PV Energy

Big Island Utility – Now & After PV On-Grid v.1.2 Sales to 73,000 homes @ 0.41 \$/kWh, using 39% & 0% oil-based product **AFTER 100% PV** BEFORE 270*0.39=105 MW ~ 1 MW *438 GWh / \$ 180M Annual oil-kWh sales 4.38 GWh / \$ 2M Annual excess PV-kWh sales \$ 0 M 76 GWh / \$ 31M 112 GWh / \$(46)M*** **PV-kWh freebees** \$ 0 M Annual MM Charges <2.5% homes <\$ 0.5M \$20/mo./home \$ 18M 42 Mgal / \$-125M Annual fuel costs 0.4 Mgal / \$-**1M** Annual O&M generation expen. 3% **\$- 10M** 5M **S**-Annual O&M distrib. expenses 3%** \$- 27M **\$- 27M \$- 18M \$- 18M** Annual Profit 10% Balance 0 Λ

Installed PV cost: 6.1 kW*73,000*4 \$/W = \$1800M; or 3kW ÷ \$900M * = 500 kWh/mo.*12 mo./y*73000 homes/1000000*0.41 \$/kWh ** O&M Expenses are assumed to be 3% of CAPEX/year *** free electricity, worth \$46M if sold at 0.41 \$/kWh, or worth 112*4 = 448 million EV miles or 37,000 EVs @ 12,000 miles/year, at only the fuel charger cost of \$3000/30y/12000 = 0.83 ¢/mile 112*0.7/33.7*60mi,/GGE = 140 million FCV miles or 12,000 FCVs at a fuel cost of 3-4 \$/GGE-H2 or 5 - 7 ¢/mile. CV at ~ 15 ¢/mile ⁶ Ulrichbonne@msn.com